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Abstract

lutegraling task and data parallelism in a language [ramework has allracled considerable attention. Both
the Fx language at Carnegie Mellon Universily and High Performance Fortran standard have adopled a
simple model of lask parallelism that allows dynamic assignment of processor subgroups to tasks in the
application. However, the lasks must be wrillen in the native language, i.e Fx or HPF. Large scientific
parallel applicalions often use a mix of languages [or a variely of reasons, including the reuse of existing code
and the suitability of dilferent languages for different modules. ln this paper we demonstrate how a “native”
parallelizing compiler can be used (o create parallel applications thatl combine nalive modules with “foreign™
modules wrillen in a diflerent parallel language. We argue thatl virtually all the advanlages ol translating
a foreign module to the native language can be achieved by using the native compiler (o coordinale the
interactions with the foreign module. In particular, the ability to dynamically modily the assignment of
processors among nalive modules and foreign modules is retained. ‘Lhe foreign module interacts with the
nalive program through shared arguments and the changes in the code for the foreign module are minimal.
We demonstrate how this idea allowed us to accelerate (he development of the Airshied air quality model at
Carnegie Mellon using the Fx language and parallelizing compiler. We also examine the tradeolls belween
the nature of interaction permitied with the foreign module and the complexity of language and runlime
support.
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1 Introduction

Many interdisciplinary applications require thal several existing programs be combined into a larger appli-
cation. An example of such an interdisciplinary system is a model that simulates the fate of pollutants in a
multimedia environment coupled with an exposure assessment model that evaluates the impact of pollution
on public health. Such a complex model would include as components a photochemical model, an emissions
model, a waler qualily model, and an exposure model. While integrating independent programs is already a
diflicull task, this is further complicated by the fact that the individual programs will often be parallel pro-
grams, which; in general, have been parallelized using dilferent programumning tools. Moreover, these models
are often expensive to execule, so an important goal of the integration is that the resulting model can be
execuled in parallel with reasonable efliciency.

There is a wide range of choices Lo accomplish this integration. A first approach s lo use ad hoc
solutions, such as running the programs independently and using file sharing for communication. ‘LThe high
commumnication cost and long-term maintenance costs make this approach unattractive. At the other end of
the spectrum lies the oplion of merging the independent programs inlo a single program. This is in general
very hard and time consuming {i.e. expensive) since the diflerent programs will often use diflerent languages,
tools and runtime systems. Moreover, it requires fairly detailed knowledge of all programs, which is rarely
presenl in any group. An inlermediate solution is o use tools and languages Lo creale “glue programs”
that integrate the independent programus in a systematic way. Such programs are writlen in coordination
languages such as Durra [2], Hence [3], Strand [12], and Linda [4]. ‘These languages make it possible to
build programs by connecting existing modules, based on separately specilied interfaces for each module.
Although these languages have had some success, they have not seen widespread use. We speculate (hat
the main reasons are thal a new and unfamiliar language has to be used and that the languages do not
adequalely address performance issues in general, and the use of parallelism in particular.

Our approach is similar to that of coordination languages, bul we use an ewisling language that is
designed for efficien! eveculion and use of parallelism. Specifically, we propose (o use High Performance
Fortran [18, 16]. We use the Fx language and compiler [14, 27], a variant of HPF developed al Carnegie
Mellon, to validate the concepl. HPF is widely used and a lot of compiler technology [7, 17, 27] has been
developed to support eflicient execution of HPF programs. Following recent research in the integration of
task and data parallelism [6, 9, 14, 29], a form of task parallelisin has been added to HPF as an approved
exlension. We propose Lo use the HPF (asking mechanism to support the integration of independent parallel
programs: exlernal programs will be represented in the integrated application as tasks, which we will reler
Lo as foreign lasks or modules.

A foreign module is an independent executable that may have been developed using a different language
and parallelism model. ‘The relationship between a foreign module and the main program is very llexible
and is nol necessarily of the form of a subroutine call. ln particular, the [oreign module can conlinue
execution in parallel with the main program. In the native program, the foreign module has a representing
processor subgroup and native and foreign modules exchange data through variables mapped onto that
subgroup. ‘This communication is implemented using a shared communication library that is based on the
native runtime system. However, the inlernal communication model of the loreign module is independent of
the communication model used by the native compiler. .

T'his approach oflers the advantages of a single integrated application without the elfort of translating the
application Lo one language or programming model. For example; a common lask management library can
oplimize the allocation of nodes across the entire application including the foreign module. ‘The interaction
with the foreign module is general and asynchronous bul it can be done efliciently since it uses a comumon
communication fabric.

‘The remainder of this paper is organized as follows. We present the Fx task programming model and
ils integration with foreign modules in Section 2. In Section 3 we describe the implementation issues in
supporling foreign modules. We present our motivating application and its performance in Section 4 and 5.
We compare our approach to related research in Section 6 and summarize in Section 7.



2 Foreign modules in a parallel language

‘T'his section explains the concept of a foreign module and discusses how it increases the power and flexibility
of a programming environment based on a high level parallel programming language. ‘The “host” language
[ramework is assumed to have support for data and task parallelisin along the lines of Fx and High Perfos-
mance Fortran (HPF), and will be referred (o as the “native language”. To make our discussion concrele, we
will present examples using the Fx language and compiler. However, the concepls discussed are applicable to
HPF and similar languages. We briefly describe the Fx programming model and discuss how it is enhanced
o supportl foreign modules.

2.1 Native programming model

Data parallelism in Fx, as in HPF, is based on distributing data across processors. The data distributions
supportled include block, cyclic and block-cyclic. Loop parallelisim is expressed by a special parallel loop
construct that combines loop and reduction parallelism. Since the details of data parallelism are not directly
relevant (o this research, we will not discuss these any further and refer the interested reader to [27, 31}

‘l'ask parallelisim is supported in Fx by the use of mechanisins to distribute datla structures onto subgroups
of processors and a mechanisin to specily the execution of code on a subgroup of processors [30]. We outline
the main directives used Lo achieve these purposes.

e A TASK_PARTITION directive is used to partition the current group of processors into named subgroups,
eg.

TASKPARTITION :: parti(l), part2(x), part3(N-x)

defines a pactition of the current processors into subgroups parti, part2 and part3, thal are assigned
1, x and N-x processors, respectively. Note that x and N can be procedure parameters and hence the
actual processor assignment is dynamic.

e A SUBGROUP directive maps variables {o a named processor subgroup. e.g.
SUBGROUP(part1) :: A1, Bl

maps variables 41 and B1 Lo the processors assigned lo subgroup parti. Lhe details of mapping, (e.g.
BLOCK, CYCLIC) are determined by separale directives [or alignment and distribution.

e A BEGIN TASKREGION and END TASKREGION pair delines a task parallel part of a program, or a lask
region. A task region can contain blocks of code delimited by ON SUBGROUP subgroupname and END ON
pairs, which is the code direcled Lo execule on a named subgroup. Such code can only access variables
mapped Lo that subgroup.

‘I'he following code:

BEGIN TASK_REGION
ON SUBGROUP parti
call task1i(A1)
END ON
ON SUBGROUP part2
call task2(A2)
END ON
END TASK REGION

directs that subroutine task1 be execuled on processors assigned Lo subgroup parti and subroutine
task2 be execuled on processors assigned Lo subgroup part2. ‘The code inside a subroutine called in




an ON SUBGROUP region may [urther subdivide the processors. Hence lask parallelism can be used to
exploit nested parallelism.

We illustrate (he use of task parallelism with an example. Figure 1(a) uses pseudocode Lo illustrate a
simple pipeline containing $ tasks, while Figure 1(b) shows the structure of the computation. Each lask
repealedly receives its inpul data from a predecessor lask, compules, and sends output Lo a successor task.
Task 1 reads external inputl and ‘L'ask 3 generates the final output. Thus, every ileration acls on a new data
sel and the corresponding read and wrile statements are inside routines ‘Laskl and Task3, respectively.

A high level task and data parallel implementation of this pipeline in Fx is shown in Figure 1{c). ‘Yhe
TASK_PARTITION statement is used to divide the processors into three named subgroups, and a SUBGROUP
statement is used to map the variables A1, A2 and A3 onto named subgroups P1, P2 and P3, respectively.
TASK_REGION direclives are used to define a task region, and ON SUBGROUP directives are used (o map the
computations, i.e. the three subroutines taskl, task2and task3 onto the three processor subgroups. Data
is exchanged belween subgroups by assignments of the form A2=A1, where the variables on one or both sides
of (he assignment have been mapped on a SUBGROUP region. The assignment statements are in a TASK.REGION
region, butl not in a ON SUBGROUP region, and they can therefore access all data. During execution, the three
subgroups are lypically working on dilferent datasets in pipelined fashion.

TASK_PARTITION :: P1(1),P2(x),P3(N-x)
SUBGROUP(partl) :: Al
i SUBGROUP (part2) :: A2
SUBGROUP(part3) :: A3
BEGIN TASK._REGION
doi=1,M
ON SUBGROUP P1
task1(A1)
END ON
A2 = A1
ON SUBGROUP P2
task2(A2)
END ON
A3 = A2
ON SUBGROUP P3
£ task3(A3)
END ON
i enddo

END TASK.REGION

Input stream of data sets

Task 1

doi=1,m
call task1(A)
call task2(A)
call task3(A)
enddo

Task 2

(a) Task 3

Outpuf stream of data sets

) (©

Figure 1: A 3 stage Lask and dala parallel pipeline in Fx

‘The details of task parallelism iu HPF are different from Fx, but the basic ideas are the same, hence the
results of this paper carry over to HPF.

2.2 Motivation for foreign modules

‘T'he task parallelismn model discussed above allows considerable llexibility in building parallel programms from
modules, but only if all the modules are writlen in the same language. Large applications are often best
developed by composing multiple modules writlen in dillerent languages. lu the example illustrated in
Figure 1, we may wish Lo use a display module developed in a diflerent parallel programuming language and
paradigm o view inlermediale results, yielding the compulation structure shown in Figure 2. 'The challenge
is to inlegrate the display module TaskF with minimum effort while achieving high efliciency and maximum
Nexibilily in its usage.
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Figure 2: A pipeline with a foreign module

Native Program Foreign Module

Figure 3: Architecture of foreign module inleraction

Mechanisms [or integrating a loreign module with another program range from rewriting it in the native
language to allowing it to execute completely independently with data exchange through a common filesys-
tem. Our solution is (o allow the main program and the foreign module o execule independently, but to
use the parallelizing compiler and the runtime system Lo provide eflicient and flexible communication and
coordination belween the modules. ‘This approach has the advantage that the foreign module code does
not have to be rewritlen in the native language or linked with the main program; if the foreign module
uses a different parallel programming paradigm, these lasks can be complex and cumbersome. ‘L'he foreign
module can also execule asynchronously in parallel with the native program, increasing both flexibility and
performance. Finally, if the foreign module is writlen in a way that it can use a varying numnber of compule
nodes, processors can be allocated and reallocated dynamically between the native program and the foreign
module. ‘This approach requires “glue” code for the foreign module Lo interact efliciently with the main
program and the runlime system, although some glue code will be needed with any method ol integration.

We believe our approach is a cosl-eflective compromise between the easy bul polentially ineflicient ap-
proach of using separale programs, and the eflicient but potentially expensive solulion of full integration.



BEGIN TASK _REGION

Af = A2
ON SUBGROUP Pf
call taskF(Af)
END ON
A3 = Af
END TASK_REGION

Figure 4: Call (o a foreign task from a native module

2.3 Architecture

Figure § shows a high level picture of a native program integrated with a foreign module. ‘The loreign module
is an independent executable that execules concurrently with the main program and exchanges data with it
al select points. The foreign module uses an exlernal inlerface library that is based on the native runtime
syslem to exchange data with the native modules of the application. However, the internal communicalion
model of the foreign module is independent of the communication model used by the native compiler and
runtime system. ‘The native program consists of the parallel application code generated by the parallelizing
compiler. 'The parallelizing compiler inserts calls in the application code to the native commuaication library,
and Lo starl up and iuitialize the parallel computation.

Lel us assumme that the foreign module started oul as a stand-alone program. ‘The foreign code is modified
50 thal inputs are received from the native program and oulputs returned to the native program, as needed.
‘T'he foreign module’s external interface library is responsible for implementing these calls in lerms of the
communication primitives supported by the native communication library. ‘This code would typically replace
part of the program’s normal 1/0 code, e.g. calls to read and wrile (o/from (he file system. ‘The foreign
library also includes code for initialization and synchronization with the native program. ‘There will be a
single external interface library for each parallel language used by foreign modules, i.e., the external inlerface
library is application independent.

1n the native program, the foreign module is represented by a foreign lask, which is in eflect a stub for
the foreign module. ‘L'he interface Lo mvoke a foreign task is identical to a call lo a native task subroutine.
For example, for the computation structure in Figure 2, a processor subgroup Pf is created and declared
foreign. Luside the task region, the code from Figure 1 is modified by adding an assignment o a variable A£
mapped Lo processor subgroup Pf (Figure 4). Assignments to and from the variable Af will be translated
into communication with the foreign module, in the same way that they would for a native task.

3 Implementation

We describe how [oreign module support can be implemented using an HPF-style system as the native
platform. We discuss lask invocation, communication oplimizations, and processor allocation.

3.1 Process structure and foreign task invocation

A foreign module js either initiated by the native program or starls oll as a separate execuling program.
Subsequently, it rendezvouses with the native program and exchanges data with it at select points. These
points are marked by calls to the foreign task stub in the nalive program and calls (o the external inlerface
library in the floreign module. ‘This model is more powerful (han a “server” model where the nodes assigned
to the foreign module run a server that periodically receives “execule” requests from the nalive program
and returns resulls after il finishes executlion of the parallel task. ‘The server then sleeps until it receives
the next execute request. ‘L'he server model is simple to implement, although our “communicaling parallel
processes” design is not significantly more diflicult to support. ‘Lhis generalization is of value in several

(51}



silualions. For example, foreign modules can continue to perform input/output activities such as driving
a display device, or can perform independent computations like refining a solution, after the foreign task
invocation has returned. Nole that if the foreign module continues executling belween invocations, which is
supporled under the general “parallel processes” model, it should not modily any data structures that are
shared with native tasks, since this would violale the HPF programming model. lmplementations of the
general model should also counsider that the [oreign module may become less responsive lo lask execution
requests, potlentially slowing down the entire application.

‘The foreign module is represented in the application by a representative loreign lask. Some changes
are needed in (he parallelizing compiler to support foreign modules since the compiler cannot analyze the
code in the foreign module in the way that it can analyze nalive tasks. The native compiler needs another
mechanism (o collect essential information like the distribution of shared variables in the foreign module,
and optional information such as the scaling properties of the foreign module as a funclion of the number of
nodes. ‘This information will generally be provided by the programmer or exported by the foreign module.
A simple method is Lo associate a set of declarations with the foreign module that can be used by the native
compiler. Note that for a specific class of forelgn modules, the collection of this information could be very
syslemalic, or even automalic. For example, for foreign modules that are based on a specific distributed
object library such as Dome [1], this information could be automatically exported by the objects.

"To invoke a foreign module at runtime, the native program calls the foreign lask representing the foreign
module. ‘The foreign task sends a request to the processors assigned to the foreign module, provides the
input data, and then wails for the resulls Lo be returned. Communication uses the native communicalion
library and is discussed in more delail laler.

3.2 Synchronization

An interesting challenge in adding foreign module support to an HPF-style system is synchronization. HPF
tmplementations are based on SPMD programming model, i.e. each processor executes the same executable,
50 it has access Lo appropriate application control flow information. For example, information on the outcome
of conditional instructions is available (o the relevant processes as a result of the way the program code is
generated by the parallelizing compiler. ln an application that includes foreign modules, task synchronization
(i.e. task invocation and termination) is handled by the foreigu task, but synchronization required for
comununication, i.e. pairing up readers and writers, is harder to resolve.

‘The example in Figure 4 shows how input and oulput stalements are used to move data into and out
of tasks. In the simple case, inputl and outpul stalements are executed unconditionally, and it is simple
Lo delermine what data has to be communicated with the task. Conditionally executed inpul or outpul
statements are not a problem for native tasks, since all processes share the same control flow, but they are
a problem for foreign modules. ‘The problem is easy (o solve for inpul slalements: the runtime system can
collect information on required input data, and then send the data when the foreign task (and module)
is invoked. The synchronization problem is more diflicull for outpul statements. One solulion is Lo have
the foreign module always return a supersel of the resulls, but this might be expensive and ineflicient. An
allernative is Lo have oulpul statements send “read requests” to the foreign module. ‘The most eflicient, but
also most complex solulion, is to include enough of the application flow control into the foreign module, for
examnple as a code segment thal is called by the foreign library, so thal the f{oreign module can determine
what output statements will be execuled.

3.3 Communication

Support for synchronization and communication between a foreign module and (he native program can be
implemented in a variely of ways and presents a tradeoll belween the complexity of the implementation on
one hand, and programming Rexibility and performance on the other. We shall outline the main options
which are represented by different arrows in Figure 5. We shall only discuss the transfer of dala from the
nalive program (o a foreign module, since the reverse scenarios are analogous.

We first describe the simple case represented by scenario A in Figure 5. 1n (his case, the communication
calls between the sender and receiver are always malched. ‘The parallelizing compiler exports its model of
communication generation for calls to foreign tasks and the user ensures thal matching calls are made in
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Figure 5: Optimizatious for communication with a foreign module

the foreign module. ‘The data is transferred from the native program (o the representative loreign lask,
then (o a designated inlerface node in the foreign module, which in turn distributes il to all nodes of the
foreign module. ‘Lhis is the easiest model Lo implement bul may be ineflicient because of the extra copies of
data on the path from the native program to the loreign module. A special case that is particularly easy Lo
implement arises when the number of processors assigued to the representalive foreign task and the inlerlace
node of the foreign module are sel (o one since (hat obviates the need for parallel communication between
the foreign module and the native task.

An important optimization Lo this mode of communication is represented by the scenario B in Figure 5.
Lu this case the synchronization model stays the same, but data is transferred directly Lo all the nodes of the
foreign module. ‘This requires that the topology of the foreign module and the data distribution inside il be
exposed Lo the native compiler for communication generation. ‘This optimization is clearly desirable since
it eliminates one dala transfer. However, implementalion is more complex, especially if the data mappings
inside the foreign module are not supported by the native compiler. For example, the foreign module may
supporl sparse dala structures which would imply that the native compiler and the native communication
library have Lo be extended Lo supporl commuunication of distributed sparse data siructures.

Finally, the most ambitious and most eflicient scheme for communication is represented by the scenario
C in Figure 5. lu this case, the copying of data to the representalive foreign lask in the native program is
completely eliminated and the data is directly transferred [rom the variables in the native program to the
variables in the [oreign module. ‘L'his case is very hard o support in general since it requires that complete
control flow information of the foreign module be made available to the nalive program and vice versa. ‘The
reason is hal assignments {o the variables of a foreign task can happen anywhere in the task region of a
program, and (o translate these without buflering requires that the native program know when it is safe to
make the transfer, and the foreign module must be able to accept data in an unexpecled order. However,
further discussion is beyond the scope of this paper.

3.4 Processor allocation

Ln some applications, allocation of processors Lo tasks is an umportant oplimization step. ‘I'he paramelers
that detlermine a processor assignment include efliciency of tasks as a function of the number of processors,
communication costs associaled with a specific allocation, and system counstraints (e.g. memory size). One
of the main advantages of bringing foreign modules under the umbrella of a parallelizing compiler is thal the
compiler can optimize processor allocalion across an entire application. ‘Lo achieve this, the compiler must
have access Lo the relevant task information. Since this information is typically obtained through profiling,
this is not (hat different [rom the support needed for nalive (asks. Further, the foreign module must be
written in such a way that it can execule on a variable number ol processors, which is the case for most
parallel codes today. Nole that if the foreign code can be remapped dynamically, for example on a per call
basis, then dynamic reallocation based on runtime information is possible. Hence the techniques developed
for automalic mapping of tasks [22, 28, 29] can be applied to applications with foreign modules,
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4 Application example:Airshed

To lest the feasibility of compiler-based support for foreign modules, we added a population exposure model,
parallelized using PYM, (o an air pollution model, parallelized using Fx.

The air pollution model we starled with is the Urban Regional Model (URM) called Airshed, developed
by McRae and Russell [20, 19]. ‘The parallel Fx version of the model uses both task and data parallelism.
Data parallelisin is used Lo parallelize the modeling of the particle trausport and the chemistry calculations.
Task parallelism is used lo execule pre-processing of inpuls and post-processing of outpuls in parallel with
the main computation [30].

Air pollution models are oftenr coupled with other models, such as surface or waler quality models, to
model more complex systems. ln this experiment we coupled Airshed with a population exposure model,
called PopExp, thal uses the concentiration data for chemicals, generated by Airshed, (o calculate the impact
on health. ‘The population exposure model was wrillen by an enviromumnental scientist using explicil message
passing (PVM) without the use of the Fx compiler. It (akes as inpul a concentralion array with chemical
species and populalion data, and generates population exposure data. The parallel PopExp code [ollows a
master-slave protocol: a master node distributes the data on concentrations of dilferent chemicals to the
slaves, which operate in parallel on dillerent parts of the space.

Figure 6 shows how the integration was performed. We created a lop level Fx program that invoked
both Airshed and PopExp as tasks. ‘Lhe Airshed lask is the original Airshed code writlen in Fx, while the
PopExp task consists of a foreign task (hatl represents the PVM parallel application in the Fx program.
Alished periodically sends hourly concentration data direcily to the PopExp where il is received using a
variant of the Fx communication library. ‘The PopExp model then used PYM (o distribute data internally
and Lo supporl the parallel computation. Airshed is used by environmental scientists through the GEMS
problem solving environment [25, 24] which allows them (o model different scenarios and view and compare
oulpuls. PopExp generales oulpuls in a such a way that il can be displayed in GEMS, so the integrated
Airshed-PopExp applicalion presents a single interface to users.

Figure 7 illustrates the parallelism in the integrated application. ‘The boxes represent Fx tasks that can
execule in parallel, each with internal data parallelism, and the arrows represent data dependencies that
constrain execulion order. Our implementation uses the simplest data transfer mechanism discussed in the
previous section, i.e., the dala is routed through a foreign lask in the native program and an interface node
in the foreign module, which may degrade performance.

T'wo versions of this inlegrated application have been developed. ‘Lhe fisst one execules on an Alpha
cluster, where Fx uses PVM for native communication. ‘The second one runs on an lutel Paragon, where Fx
uses the NX libraries for native commuunication. ‘The latler implementation supporls dynamic reassigunent
of processors between the foreign module and the native program.

T'his example illustrates some of the advantages of compiler-supported foreign modules. First, it demon-
strates thatl an application developed using a different computalional model (explicil message passing using
PVM) can be accommodated in this {ramework. Given the large number of existing explicitly-parallel mod-
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Figure 7: ‘The structure of the combined Airshed-PopExp computation
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ules, support for this class of applications is important. Second, we were able to bring up the integrated
application quickly since it required minimal changes (o Airshed and PopExp modules. Finally, we were
able (o change the balance of the number of nodes allocaled to Airshed and PopbExp using the existing Fx
mechanisis.

5 Performance Evaluation

In this section, we quantily two performance measures [or compiler-based foreign module support. Fiest we
look al the performance dillerence between using foreign modules and an all Fx implementation. Second,
we illustrate how some of the performance advantages of integrated tools for parallel compuling carry over
Lo our approach Lo foreign modules. Specifically, we examine the value of the ability to dynamically adjust
the processor allocation between a native Fx program and a foreign module. We use the Airshed model and
the Popbxp model execuling on an lutel Paragon for all our measurements.

5.1 Performance characterization of foreign modules

To examine the value of translaling a module to the natlive language as compared o integraling il as a
foreign module, we developed an all Fx version of the Airshed/PopExp application in addition to the version
in which Airshed is programmed in Fx and PopExp is a PVM [oreign module. ‘The purpose was {o measure
the extra overhead of calling PopExp as a foreign module and whether it justified the ellort and expense
of translating it to Fx. We verified thatl the stand alone versions of Fx and PVM PopExp had comparable
performance.

The results oblained on an Intel Paragon are plotled in Figure 8. We observe that there is a fixed
exlra overhead associated with the foreign module approach. ‘L'he reason is the extra copying in our current
implementation of communication with a foreign module as discussed in Section 4, which should be reduced
with the implementation of some of the communication oplimizations discussed in Section 3. However, the
overhead is not significant enough (o be a large lactor in the overall performance, and in most cases, it will
not be sullicient (o justify rewriting the foreign code.

5.2 Dynamic processor allocation

Oue of the interesting leatures of the population exposure module is that the amount of computation in it
varies with the scenario in which it is used; as well as the input data sel. ‘Lo simulate different usages of
this module, we developed mulliple versions of PopExp with different amounts of computation. We then
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experimentied with assigning dillerent number of processors Lo the PopExp module and the Airshed module
in the integrated application.

‘The resulls are shown in Figure 9. ‘Ihe graph shows the execulion time as a function of the number of
nodes assigned (o the foreign module. Different curves are shown for different implementations of the foreign
module; the labels 2x, 4x, elc. represent the amount of computation, relative Lo the base PopExp compu-
tation. As expecled, each curve goes through a minimum, corresponding Lo a balanced node assignment. 1f
oo few nodes are assigned (o the PopBExp calculation, it ¢an become the bottleneck. If too many nodes are
assigned to the PopExp calculation, the main Airshed computation becomes the bottleneck. lun the latier
scenario, all curves merge since the amount of computation in PopExp no longer aflects the execulion lime.

We observe (hat the oplimal allocalion is dependent on the version of the PopExp in use, and not
surprisingly, the higher the amount of computation in the PopExp module, the larger the number of nodes
allocated to it in the oplimal mapping. ‘This poinls out the value of the abilily to'load balance belween
a native program and a foreign module. ‘This important feature can be supported by using a parallelizing
compiler to coordinate foreign modules with the rest of the application.
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6 Related Work

Support for foreign modules is a important problem in building large parallel applications and i is usually
resolved in an ad-hoc manner. We review some of the main efforls thal have proposed more syslemaltic
solutions.

Designers of High Performance Fortran [18] realized the importance of interaction with foreign code and
provided a mechanism called an EXTRINSIC procedure call. lntuitively, this mechanism lays out the rules
for transfer of control from HPF (o a subroutine in another computation model, e.g., a C rouline writlen in
MPI, thal is linked with the HPF execulable. We are using an interface that is similar in nature {o transfer
control Lo another executable. However, our approach is designed to be more flexible and potentially more
eflicient. ‘Lhe native and foreign code need not be linked together, whick can be a significant advantage
il they use different programuming models and runtime systems, and the foreign module can execule [airly
independently from, and concurrently with, the native program. Moreover, the parallelizing compiler and
runlime system can make certain optimizations, e.g. processor allocation and data movement, across the
entire application.

Foster el. al. [11] use an MP1 binding to HPF (o enable multiple HPF executables to cormmuunicate using
MPI collective communication operalions. ‘This approach is broadly similar (o our approach and the main
difference is that our system is more closely integrated with the parallelizing compiler. In particular, the
interface from the Fx/HPF compiler is not an explicit call to a collective communication library but just a
subroutine call in o task region.

Sharma el. al. [23] present a runtime approach Lo inlegrating helerogeneous codes. While the proposed
syslem is somewhat similar (o our system, we believe the use of a parallelizing compiler that has a global
view of the enlire application can result in betler performance for many applications.

7 Conclusions

Comporents of large interdisciplinary applications often do not fit a single parallelism model and they are
often developed using different paradigms. 1L is important Lo be able to build and orchestrate parallel
programs using dillerent types of components while maintaining high execulion efliciency. We presenied a
simple approach (o crealing applications consisting of programs generated by a parallelizing compiler for
a language like HPF, augmented with foreign modules developed with a diflerent language and parallelism
model. Our approach uses the parallelizing compiler as a coordination tool. The main advantage of this
approach is that the involvement of the parallelizing compiler makes it possible lo achieve the performance
and Nexibility of an application completely writlen in the nalive parallel language, even though some of the
comporents are foreign modules wrillen in different [rameworks. For example, processor allocation and dala
movement can be oplimized across the entire application.

We have used this approach to develop an integrated air quality modeling and related population exposure
application. We present experimental resulls lo validate that this is an effective approach Lo developing
real parallel applications and presents a good tradeofl between development effort, performance, and usage
Nexibility.
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